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TECHNICAL MEMORANDUM 1403

ON THE INSTABILITY OF METHODS FOR THE INTEGRATTION
OF ORDINARY DIFFERENTIAL EQUATIONSL

By Heinz Rutishauser2

In spite of the remarksble publication of J. Todd (ref. 1) the
essential points of which are related below, the author has since
observed several times methods for the nummerical integration of differ-
ential equations which, although subject only to a temptingly small
truncation error, nevertheless involve the great denger of numerical
instebility. I went to state beforehand that this danger hardly exists
for the well-tested methods of Runge-Kutta and Adems (extrapolation
methods) if they are applied correctly.

It is a natural characteristic that a differential equation to.be
solved numerically 1s approximated by a difference equatlon, and that
the latter 1s then solved. In order not to be forced to select an all
too small intervel, one prefers difference equations which spproximate
the differential equation as closely as possible but in compensatlion
are of higher order then the original differential equation. Preclsely
in this, however, there lies a danger because the difference equation
thereby has a greater diversity of possible solutions, and it may well
happen that the numerical integration yields precisely one of the
extraneous solutions which only at the beginning is in any way relasted
to the desired solution of the differentiel equation. In the paper of
J. Todd mentioned before several examples of this type have been
enumerated.

Consideraetion of the pertinent veriaetion equation is particularly
informative. It is very well possible that the differential variation
equation 1s stable, that is, that it contains only converging solutions,
whereas the difference varistion equation is unsteble since i1t possesses,
due to the increased diversity of solutions, aside from the converging
solutions, also solutions which lincrease exponentially. A deviation
from the correct solution, once it exists, small as it msy be - and such

L1'{iber die Instabilitdt von Methoden zur Integration gewdhnlicher
Differentialgleichungen,” ZAMP, Kurze Mitteilungen, vol. III, 1952

Pp. 65-Tk. .

2Institut fir angewandte Mathematik der ETH, Zirich.
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deviations are unavoideble, because of the rounding-off errors - there-

fore increases rapidly and may finally falsify considerably the solution
obtained. Yet - we want to emphasize this once more - this instability

is caused only by an ineppropriate lntegration method.

In the following discussion, several customary methods are examined
from this viewpolnt, and simple criteria for the stabllity of such meth-
ods are indicated. For the rest, this report does not deal with error
estimates.

DIFFERENTTAL EQUATIONS OF THE FIRST ORDER

}"' = f(x,Y)
Variation equation
_ of
n' Ui
Ty

() Integration by Means of Simpson's Rule5

L
_ n
Vel = Vk-1 T 3 (y'k+l +hyty + V'k_l) (1)

This relationship, together with the differential equation, ylelds
two equations for the unknown quantities Vier1 and y'k+l which are

solved mostly by iteration. If the differential equation 1s linear or
guadratic in y, the iteration can be avoided. We assume, however, that
one passes over, in any case, to the next integration interval only when
the relationship (1) is satisfied.

The difference veriation equation pertaining'to (i) is evidently

3The phenomenon was observed on thls example, and correctly inter-
preted, also by Mr. G. Dahlguist, Stockholm (Lecture at the GaeMM-
convention 1951 at Freiburg im Brelsgau). Compare also: Z. angew.
Math. Mech., 31, 239, 1951.

h'Whe:n:'e h signifies the length of the integration interval, and
Yy stands as an abbreviation for y(kh).
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If one assumes fy to be constent, and chooses the expression 1 = AE

for the solution of this equation, one obtains for A a quadratic
equation with the solutions

2
I’ 2 hﬁy
7\l—l+hfy+?fy+...~e

N

2 . -hf.. /3
h W2 o 2 /
=—l+—f -—f +oon~-e y
P2 3°Y 1877
One recognizes easily that, of the two fundamental solutions M. x = )lk
2

and na’k = %Qk of the difference varistion equation, the first one

approximates the solution of the differential variation equation whereas
the second one is brought in by the numerical method.

In particuler Khe /3
k—
%2k ~ (—l) e y/

represents for f54<0, thus precisely when the differential equation is

stable, an oscillation which i1s slowly exponentially increasing. This

has the effect that a small disturbance of the numericel solution -

caused by a rounding-off or a truncation error - is intensified in the
further course of the integration and finally gets completely out of

hand. TIn Collatz'! (ref. 2) book, the phenomenon is denoted as "roughening
phenomenon"; means for elimination of this inconvenience asre given. On
the other hand, the explanation given there is not complete; the phe-
nomenon occurs only for ‘fy < 0; there is nothing to be apprehensive of

for fy 2 O which 1s very important particularly in regard to the ordi-
nary Simpson's integretion rule (fy = 0).

(p) Integration According to Runge-Kutta and Similar Methods

Since these methods calculate Vi1 from Yy, according to a
prescribed rule and without use of the preceding values Yk_1s Y-
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the order remains unchsnged in the transition from the differential
equation to the difference equatlon; thus no forelgn solutions are brought
in, and no instability 1s to be feared.

( The same property can be found in a method indicated by W. E. Milne
ref. 3).

(c) Integration According to Adams

We consilder a four-point formula
Yigel = ¥ + 24 <9-'>"k+1+l9yk - 5y k-1+Yk2)+h5 R (2)

This again ylelds, together with the differential equation, two equa-
tions for the unknown quantities Yiel and ylk+l which are mostly
solved by lteration.

The difference variation equation pertaining to (2) becomes

3h 1%h h _
(l BCIRE k+l> R -<l &, k) et 2R Ey 1l - gy By, keeeen = O

If one again considers fy as constant, the expression Mg = AE yieids
an equation of the third order for A. A solution Xl of this equation

ht
lies very close to e y, therefore nl k= Al corresponds to the

solution of the differential variation eqpation whereas Ke and RBk
are extraneous solutions.

However, the equation for A 1s reduced to M -MN =0 when h
tends toward O so that, for a sufficlently small bk, one will have at

any rate small ka and Az, nemely ~ t‘d-hfy/Qh. The extraneous solu-
tions n2 k = %2 and n3 k = Kjk thus converge rapidly. For a suffi-
ciently small h, Adems' method is therefore stable.

(d) Variants of (c)

In order to improve the accuracy of Adams' method, one may use also
other expressions for the corrector instesd of (2). As long as the
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corresponding five- or six-point formulas are involved, there are no
objections, but one has to be careful when yy,;; 1s not calculated

from yyi and the derivatives as in (2) but perhaps from Y1 Or
Yx-3 &and the derivatives, as for instance in

yk"‘l = yk-3 -+ %(73}"1{_!-1 + 32y"k + l2‘y"k—l 4 52‘y"k_2 + 7y'k_3) + h7 « o o
In fact the pertinent difference veriastion equation has a solution
k 1%h
M, = A with A =~1 = £+ . . &
k )4_5 Y
so that the method 1s unstaeble for fy < O.

DIFFERENTTAT. EQUATIONS OF THE SECOND ORDER

1"

v' o= £(x,y,y")

Insofar as these equetions are solved by separation into a system
of two equations of the first order, what was said so far is valid.
Particularly in the case of numerical integretion of damped osclllations
we must caution against the methods (a) and (4).

However, there exist also methods which solve an equation of the
second order without transformation into a system:
(e) The Method of Central Differences?

The formulas on which this method 1s based are (especially for
second order)

2
Yrel = 2V - V-1 + %2-(3’"@1 + 10y"y + Y"k-]) (%)
Yiger = Vg1 + %é""kﬂ + byt + V"k-l) (5)

5Compare reference 2, p. 80.
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They yiéld, together with the differential equatlon, three equations -
for the unknown quantities ¥y q, y'k+l’ and y"k+l‘ The two simul-

taneous difference variastion eqpatiﬁps pertinenﬁ to (h) and (5) are
solved with the expressilon My = PAT, n‘k = @A, under the assumption

of a constant fy and f&r; because of

11
Tl = TyMepa + Tyelipp

one obtains, with the abbreviations a for h?fw/la and b for
hf&./E, the equations

p[(?@ - oA+ 1) - a(A2 + 10M + 15"_

q % b(A2 + 10N+ 1) =0 [%rom (hi} (6

q[}kQ - 1) = (A2 + ¥ + IE]- o) % a(k2'+ AX +1) =0 [%rom (éﬂj

These equations can exist simultaneously with (p,q) # (0,0) only when
the determinent of this equation system for p and ¢ vanishes; one
obtains after some calculations

(A - 1) E}@ - 1)(\ - .1) - a(h + 1){(A2 + 10N + 1) -
(A - L)(A2 + WA + 1)__| =0

The four solutions of these equations are

M=1l+amh+ ... where o7 and a, are the solutions of
M=L1l+ah+ ... the equation a2 - afyt -'f‘y =0 ] )
Az o= L h

5 . _ -~
MI‘ = - l - 5 fyl + 4 . -)
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Evidently Klk and %ek are the regular solutions of the difference

variation equation; they correspond to two fundemental solutions of
the differential variation equation; RB and Ny, in contrast, are

extranecus. As long as 1 2 0, there 1s nothing to fear, in partic-

£
Y
ular, the method may be strongly recommended for a y'-free equation,

but for f£y1 <0 (damped oscillations)

Mk = Mk o (-1)ke-(K0/3) gy

increases, and Kj, too, may still become dangerocus because K3 k=1
2

alsc becomes finally very large, compared to a function converging to-
ward zero. .

The author completely calculated the example y" + y' + 1.25y =0
with the initial conditions yo =0, y'=1 (exact solution:
-X

—

e‘asin x) on the sequence-controlled computing machine of the ETH,

There follow a few excerpts from the thus obtained tsble of func-
tions (we calculated with h = 0.1):

X y y!

4,8 | -0.0903699 | 0.0531227
.9 |~ 0847792 0584842
5.0 | - 0787132 | .0626410
5.1 | ~ .0722891 | .0656573
5.2 | - 0656173 | .0676070

In this region nothing consplcuous is noticeable yet, the y-values
deviate from the true values spproximstely by one in the last decimal
place, and only formation of the differences for the y'-values reveals
a certain irregularity. For +t = 17, however, the influence of th

becomes pronounced for the y'-values and also for the differences of
the y-values:
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x y y!

17.0 | -0.00019574 | 0.00005017
17.1} - .00019061 | .0000525%
17.2 1 - 00018366 [ .00008620
17.3 | - 0001752k | .00008239
17.4 | - .00016548 | .00011235
17.5| - 00015475 | .00010258

The considerably weaker osclllation of the y-values follows aleo
from the equations (6): for A = A, one obtains from the first of
these equations

2 .
D % D i? = - B £ ,, here therefore p ~ —%-

q - 6 Y 600

The further course of numerilcal lntegration does not require any comment:

X y v

22.8 | -0.00000815 | 0.00005320
22,9 [ - .0000086k4 | - .00006078
23.0 | - .00000862 .00005968
23.1 | - .00000887 | - .000062%7
23,2 |- .00000861 | .0000660L
23,3 | - ,00000868 | ~.00006486

29.5 | - .00000140 | - .00053037
29.6 .00000041 | .00054889
29.7 | - 0000014k | - .00056693
29.8 00000050 | .00058682
29,9 | - .000001%8 | .00060603
30.0 .00000060 | - .00062735

The author is well aware that the assumption of a constant ﬂy and
fy. in the ebove considerations greatly restricts the generality. How-

ever, the results show that what matters is only the sign of these quan-
tities, and this sign i1s indeed inveriable in a great many cases. The
statements are, therefore, qualitatively almost generally valid. Only
when fy changes its sign, from time to time in the course of the inte-
gration, for instance when method (a) is being used, a gpecial case
arises since the occurring oscillations alternately increase and are

damped agein.
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GENERAL, CONSIDERATTIONS

Conslderation of the examples suggests the conjecture that insta-
bility mey oeccur precilsely in the case of integration methods which

form yy4y by integration of y' over several intervals (two intervaels
in method (a), one interval in (b) and (c), four intervals in (d), two
intervals in (e)). However, this is not exactly the case and we shall
therefore subject & general integretlion method to an examination.

Almost all known methods use relatlionships which are conteined in
the general formula

N
0 1
2(0) o).,
Y+l = E:: 3Ty TR 2&: a&j)y key Toeooo t
N & (0) (W)
h Z;;alj Vit
()"
Vel = EE::alj Vigey T h'Z:: 2y Yy T 00 0 7
> (1)

N-1 <= (1) ()
g Z N3 Vi s

~Im

n-1 _ (n-1) Sln-1) (n-1) (n)
y1«:+J._;&n-l;j1;+,j hZa Teeg Tt T

Nomil o= (n-1) (n
h i Z aNJ yk+3
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There are, in addition, differentiel equations

(n) )
Fa (xk+l’yk+l’ s e e Vg1 =0 |
(p+1)
ﬂ&léﬂiﬂkﬂf' © 0 Vi =0 , (8)

Fpix () o -
NP1V © 0 00 T/ = )

1Y

which form, together with the equations (7), N + 1. equations for the

N
N + 1 unknowns yy,.7s y'k+l’ o o ey y£+i. Generally, N = n; however,

W. E. Milne (ref. 3) uses in the method previously mentioned higher
derivatives then those appearing in the differentiasl equation. There-~
fore he differentiates them several times in order to obtain the required
number of relationships. One may thus obtaln the equatlions Fn+l « o

to FN by differentiating the initial equation F,.

If one, furthermore, brings everything in the equations (7) to one
side, the variation equations for the entire system (7) and (8) read

evidently Gdth aiii = =1
J

N 1

> S aﬁﬁ)h”"in&g =0 (1=0,1, . « ., n=1)
=i Jj=-m
1 oF
Z i ngu)=0 (i:n, n+l, e o ey N)
0 ay(k)

If one uses for this the expression ngu) = ppkj, one obtains in sub-

stituting e system of N + 1 simultanecus equations for the Py which
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can be satisfied only when the determinant of the system disappears

N[ 1 :

SIS aﬁ-’s)ﬁ h”"ipu=0 (L=0, 1, « « «p 0 =1)

=1\ j=-m

i o

EO: I p,=0 (L=n, 0+l « . N)
3 (n)

If one defines, in addition, with the coefficlents a(?j') appearing in
the formulas (7) the functions H '

Ay, (V) = é:—; a&)xj’fm- .

wherein A:'_M = 0 for u< i, the characteristic determinant reads as
follows

.A.OO hAOl h2A-02 & e & o e & s s s e o @ hNAON
0 All hA12 e & & o6 & o & w 8 & e & hN-lAm
( 0 0 0 *e ‘An-l,n—l hN-n+lAn-l,N
D 7\) = ¢ @ @ o ® 6 & 8 ® & € & e & ® 8 & a & 8 e & ¢ & e s a4 ¢ & & e .
Fn,y  Fny* Fp,y(®) O 0
Foel,y  Frnsl,y 0
Cp ()
FN’y FN,y' e & 6 e ®» o & s & § o & ¢ o e = FN,
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If the method is to reproduce exactly a polynomial of the ith degree,
which is the solution of a differentisl equation, together with 1ts
derivatives - and this one may require - the conditions

1) = (141) = y(142) = y(1#3) = ., | | = ¢(N) =
y(.j 1 yj"‘) yJ"‘) yj"' yj) 0

must be compatible. Hence follows, however, by substitution into the

1th of the equations (7):> aij) = 0, therefore A;;(1) = 0.
J

The equation D(A) = O which is decisive for the stablility of the
method must have n solutions in the nelghborhocd of A = 1, corre-
sponding to the n independent solutions of the veristion equation.

Tn fact one finds for h = O where D(A) is, except for one factor,
dt . . . that - l i - ld f
reduced to AncAip An—l, n-1, A s an n-fold zerc o

D(N), because of A;,(1) = 0.

All other zeros of D(A) correspond therefore to extraneous solu-
tions of the difference equation; in order to make the method stable,
they must lie, for a sufficiently small h, in the interior or at most
on the periphery of the unit-circle. This is certalnly the case when
for h =0 all zeros of D(A) 1lie in the interior of the unit circle,
and certainly not when individual ones are ocutside it. Therefore:

Sufficient condition for the stability of the method (7) for
sufficiently small h:

All functions

1
Aa() =3 apiiad

possess, aside from the trivial simple zero A = 1 only zeros with
Ial <.

Necessary condition: None of the functions Aii(X) heg a zero
dutside the unit circle.6

6J. Todd considered methods which satisfy not even the necessary
condition. The solution obtained then becomes completely useless
" already after a few intervals.
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The remeining functions Aiu(x) cen influence the stabllity only

when the necessary condition, but not the sufficlent condition, is
satisfied.

APPLICATTONS

For the formuls (1) there results (one has N=n =1, m= 1)

Agg = -N° + 1 Agy = % (A2 + 4\ + 1) Fp =y' - 2(x,5)

Therefore

1-22 %(7\2+1+7\+1)

D(?\) = 1

_fy

The fact that Agy has two zeros with |A| = 1 alresdy suggests cau-

tion, but moreover one reads off imediately that D(A) is positive
for fy < O and A = -1, and negative, in contrast, for A = -x, '

Thus a zero lies to the left of -1; the method is unstable.

For the formula 5.42 in the book of Collatz mentioned (p. 81),
there is (N=n=14, m=1)

Fy =y - £(x,7,5",5",y™
oo = Bpp = -(A - 1)2
A.l2 = 27\
A5)+=%(7\2+)+7\+l)

A1l other Aiu occur only with at least h? 4in the determinant. Thus

one has, except for terms with h2
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(A - 1)2 o 0 0 0

0 N2 41 2A\h 0 0

B(A) 0 0 -(n - 1)@ 0 0
= 0 0 o) A2 41 % (A2 + 4A + 1)

-fy ~fy: -fyu _fy‘" 1

For A= -o, D 1s positive, for A = -1 - ¢, D has the sign of

A2 41 %(7\2+47\+1)

-fym 1
Which for fyn|< 0 and a sufficiently smell e i1s negative. Therefore
this method is unsteble for £ .m< O.

y

On the other hand it is easy to indicate methods which are always
stable., One need only shape the formulas (7) in such a manner that -
every line begins with v

1 _ :
'yfii]). = yl(ii) *h 2; ai(.i:)L,jy(ii%c) + h2 S (i = 0,1, - - n"l)

Thereby A, (N) = AL L A\ and has therefore only the trivial zero
A = 1 on the periphery of the unit circle.

SUMMARY

In the numerical solution of a dlfferential equation as a difference
equation, the latter is usually of higher order and therefore has more
solutions than the original differential equation. It may well be that
some of these "extra" solutions grow faster than any solution of the
glven equation; in this case the computatlional solution has the tend-
ency to follow one of these and has after a certain nmumber of integra-
tion steps nothing to do with the original differentiasl equation.
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The author gives some examples and a criterion for stabillty of
integration methods. This criterion is then applied to some well-lknown
integration formulas.

Translated by Mary L. Mshler
National Advisory Committee
for Aeronautics
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